A self-consistent approach for modelling the interfacial properties and phase diagrams of Yukawa, Lennard-Jones and square-well fluids

نویسندگان

  • DONG FU
  • JIANZHONG WU
چکیده

A self-consistent density-functional approach is presented for describing the phase behaviour and interfacial tensions of van der Waals fluids represented by the hard-core Yukawa (HCY), Lennard-Jones (LJ) and square-well (SW) potentials. The excess Helmholtz energy functional is formulated in terms of a modified fundamental measure theory (MFMT) for the shortranged repulsion and a density-gradient expansion for the van der Waals attractions. Analytical expressions for the direct correlation functions of uniform fluids are utilized to take into account the effect of van der Waals’ attraction on intermolecular correlations. For bulk phases, the density functional theory is reduced to an equation of state (EOS) that provides accurate saturation pressures and vapour–liquid phase diagrams. Near the critical region, the long-range fluctuations can be corrected by using the renormalization group (RG) theory. With the same set of molecular parameters, the theory also yields satisfactory surface tensions and interfacial density profiles at all relevant temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Consistent Technique for the Construction and Evaluation of the Three-Parameter Corresponding States Principles

A self-consistent approach for the evaluation of the existing three-parameter corresponding states principles of non-polar fluids and the calculation of the corresponding states parameters is presented. This self consistent approach is based upon the assumption that the contribution of the third parameter to the thermophysical properties is much smaller than the contributions of the first two p...

متن کامل

Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory

By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT)  based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...

متن کامل

Convenient formulae for some integrals in perturbation theory

The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; C...

متن کامل

Gibbs ensemble simulation of phase equilibrium in the hard core two-Yukawa fluid model for the Lennard-Jones fluid

We report Gibbs ensemble simulations of the coexistence region of the hard core two-Yukawa fluid with Yukawa parameters chosen to mimic the LennardJones fluid. The phase envelope of the Lennard-Jones fluid is found to be well approximated by that of the Yukawa fluid. The results suggest that theoretical approaches to the hard core two-Yukawa fluid (such as integral equations and perturbation th...

متن کامل

Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium

Related Articles Phase diagram and universality of the Lennard-Jones gas-liquid system J. Chem. Phys. 136, 204102 (2012) New exact solutions for Hele-Shaw flow in doubly connected regions Phys. Fluids 24, 052101 (2012) Interfacial and coexistence properties of soft spheres with a short-range attractive Yukawa fluid: Molecular dynamics simulations J. Chem. Phys. 136, 154702 (2012) Molecular dyna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004